遮阳挡厂家
免费服务热线

Free service

hotline

010-00000000
遮阳挡厂家
热门搜索:
行业资讯
当前位置:首页 > 行业资讯

【新闻】地埋式实验室污水处理设备纳河

发布时间:2020-10-18 19:58:50 阅读: 来源:遮阳挡厂家

地埋式实验室污水处理设备

核心提示:地埋式实验室污水处理设备,厂家批量生产;上门、安装,调试;价格亲民,地埋式实验室污水处理设备

Cu2+污染对SMFCs装置电荷传递电阻的影响  分别对阳极和阴极内阻数据进行等效电路拟合.阴极阻抗的等效电路为阴极电荷传递电阻(Rctc)和电容元件(C)的并联电路与欧姆阻抗(RΩ)串联(图 4a);阳极阻抗的等效电路为阳极电荷传递电阻(Rcta)和电容元件(C)的并联电路与欧姆阻抗(RΩ)和Warburg阻抗(Zw)串联(图 4b).对照组的均高于600 Ω, 而且Rctc随加入Cu2+浓度的增加而降低, 其中400 mg·L-1 Cu2+处理的Rctc最低, 为400 Ω左右(表 4).回归分析表明, Rctc与Cu2+浓度呈现显著的负相关关系(图 5).与阴极电荷传递电阻不同的是, 阳极电荷传递电阻Rcta与加入的Cu2+浓度之间没有显著的线性关系.但200和400 mg·L-1 Cu2+处理的阳极电荷传递电阻与对照相比有明显的上升.  加入Cu2+污染3 h后, 对阳极附近土壤中(以干土重计)的梭菌属(Clostridium)和地杆菌科(Geobacteraceae)细菌16S rRNA基因进行定量分析, 结果显示, 不同Cu2+浓度处理下, 梭菌属16S rRNA基因拷贝数变化范围3.17×108 ~ 4.62×108 g-1(图 6).和对照相比, 梭菌属16S rRNA基因拷贝数未出现随Cu2+浓度增加而降低的趋势;地杆菌科16S rRNA基因拷贝数变化范围4.93×108 ~ 7.37×108 copies·g-1.和对照相比, 加入400 mg·L-1 Cu2+处理的地杆菌科16S rRNA基因拷贝数降低了22%.具体联系污水宝或参见://www.dowater更多相关技术文档。  4 讨论(Discussion)

本研究采用一种新型的SMFCs装置, 对模拟的湿地水体Cu2+污染事件进行原位、在线监测.产电电压对Cu2+污染的响应迅速, 向阴极附近的上覆水中加入CuSO4溶液后, 电压立即上升, 达到峰值后回落.本文将加铜后电压峰值与加铜前基准电压的差值, 即电压增量作为监测Cu2+污染的电信号.采用电压增量作为监测信号的优点在于消除了基准电压差异的影响.而基准电压受土壤或底泥理化性质、温度和产电细菌活性等因素影响(Deng et al., 2014;Jiang et al., 2016).消除基准电压之后, 电压增量只与Cu2+浓度相关, 因此采用电压增量指标有利于提高不同地区、不同季节检测结果的可比性.  Cu2+污染加入阴极附近的上覆水中, 引起了电压的迅速上升, 而且电压增量与加入的Cu2+浓度具有显著的线性关系.推测Cu2+能够促进阴极反应.为了验证这一推测, 检测了CuSO4溶液的一系列化学性质(表 1).结果显示, 随着Cu2+浓度的增加, 溶液的电导率和氧化还原电位增加, 溶液pH降低.由于阴极进行以下反应(Wu et al., 2017):因此, 与阴极表面接触的Cu2+浓度越高, H+浓度就越大, 越有利于反应向右侧进行.另外, CuSO4溶液的加入能够提高上覆水的电导率, 提高阴极电势.而且随着Cu2+浓度的增加, 阴极电荷传递电阻有降低的趋势, 表明Cu2+促进阴极反应的进行.这些因素都有利于增加SMFCs装置的电流, 从而提高1000 Ω负载两端的电压.而电压达到峰值之后回落, 这可能是由于阴极附近Cu2+的扩散以及被淹水土壤大量吸附有关(Deng et al., 2009).本研究在CuSO4溶液加入3 h后检测阴极附近上覆水的Cu2+浓度, 发现400 mg·L-1 Cu2+处理中Cu2+浓度最高仅为0.81 mg·L-1.随着阴极附近Cu2+浓度的减少, 铜对阴极反应的刺激效应随之减弱, 导致电压在达到峰值之后逐渐降低.  CuSO4溶液性质检测和染毒实验  用无水CuSO4分别配制Cu2+浓度为50、100、200和400 mg·L-1的溶液.对CuSO4溶液的理化性质进行分析:溶液pH采用pH计(FE20, Mettler Toledo, Switzerland)测定;电导率使用电导率仪(DDSJ-308F, 上海雷磁)测定;氧化还原电位采用微电极分析仪(Unisense Microsensor Multimeter Version 2.01)测定.上述测定结果见表 1.分别从上述4个Cu2+浓度的CuSO4溶液中各取5 mL缓慢加入到两个平行SMFCs装置阴极上方的上覆水中.同时, 向对照组的两个平行SMFCs装置各加5 mL去离子水.连续记录SMFCs装置电压至加铜(对照加水)后180 min.之后抽取阴极附近上覆水采用原子吸收光谱法检测Cu2+浓度, 同时检测阴极和阳极的电荷传递电阻, 并对阳极附近土壤的产电细菌16S rRNA基因进行定量.  2.4 电荷传递电阻  阴极和阳极的电荷传递电阻采用电化学工作站(VersaSTAT4, Princeton, USA)的交流阻抗法, 以三电极体系进行测定.测定阴极电荷传递电阻时, 以阴极作为工作电极, 阳极作为对电极, 同时靠近阴极设置Ag/AgCl参比电极;测定阳极电荷传递电阻时, 以阳极作为工作电极, 阴极作为对电极, 同时靠近阳极设置Ag/AgCl参比电极.扰动电压设为5 mV, 频率范围设置10-2到105 Hz.阻抗数据采用ZSimDemo3.30软件进行分析.  2.5 产电细菌16S rRNA基因定量  加铜3 h后采集所有处理及平行SMFCs装置阳极附近土样, 使用土壤DNA快速提取试剂盒(Fast DNA? SPIN Kit for Soil, MP)按照制造商说明书分别提取土壤DNA.地杆菌科(Geobacteraceae)和梭菌属(Clostridium)细菌16S rRNA基因丰度采用实时荧光定量PCR法测定, 在CFX96 Real-Time System(BIO-RAD, Laboratories Inc, USA)仪器上运行检测.这两个类群细菌的qPCR反应体系都为20 μL, 包括10 μL 2×SYBR Premix Ex Taq (Takara, Japan), 20 μmol·L-1上下游引物各0.4 μL, 2 μL模板DNA及7.2 μL ddH2O.引物序列和反应程序见表 2.采用溶解曲线分析扩增产物的特异性, 反应程序为65~ 95 ℃, 每间隔0.5 ℃升温测定荧光信号.采用10倍稀释含有标靶基因的重组质粒制作标准曲线.地杆菌科(Geobacteraceae)和梭菌属(Clostridium)细菌16S rRNA基因标准曲线模板的浓度分别为1.37×109~ 1.37×103 copies·μL-1和2.13×109~ 2.13×103 copies·μL-1.扩增效率分别为90.1%(R2 = 0.991)和102.1%(R2= 0.996).设置3个无模板样品为阴性对照.  2.6 数据分析  土壤产电电压、阴极和阳极的电荷传递电阻、产电细菌16S rRNA基因定量的数据与加入的Cu2+浓度之间关系, 采用origin 8.0软件进行线性回归分析

深圳救护车出租

养森瘦瘦包多少钱

造型铝方通厂家